3D Convolutional Neural Networks Initialized from Pretrained 2D Convolutional Neural Networks for Classification of Industrial Parts

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Graph Classification with 2D Convolutional Neural Networks

Graph learning is currently dominated by graph kernels, which, while powerful, suffer some significant limitations. Convolutional Neural Networks (CNNs) offer a very appealing alternative, but processing graphs with CNNs is not trivial. To address this challenge, many sophisticated extensions of CNNs have recently been introduced. In this paper, we reverse the problem: rather than proposing yet...

متن کامل

Hand Gesture Recognition from RGB-D Data using 2D and 3D Convolutional Neural Networks: a comparative study

Despite considerable enhances in recognizing hand gestures from still images, there are still many challenges in the classification of hand gestures in videos. The latter comes with more challenges, including higher computational complexity and arduous task of representing temporal features. Hand movement dynamics, represented by temporal features, have to be extracted by analyzing the total fr...

متن کامل

Sparse 3D convolutional neural networks

We have implemented a convolutional neural network designed for processing sparse three-dimensional input data. The world we live in is three dimensional so there are a large number of potential applications including 3D object recognition and analysis of space-time objects. In the quest for efficiency, we experiment with CNNs on the 2D triangular-lattice and 3D tetrahedral-lattice. 1 Convoluti...

متن کامل

2D-3D Fully Convolutional Neural Networks for Cardiac MR Segmentation

In this paper, we develop a 2D and 3D segmentation pipelines for fully automated cardiac MR image segmentation using Deep Convolutional Neural Networks (CNN). Our models are trained end-to-end from scratch using the ACD Challenge 2017 dataset comprising of 100 studies, each containing Cardiac MR images in End Diastole and End Systole phase. We show that both our segmentation models achieve near...

متن کامل

Convolutional neural networks pretrained on large face recognition datasets for emotion classification from video

In this paper we describe a solution to our entry for the emotion recognition challenge EmotiW 2017.We propose an ensemble of several models, which capture spatial and audio features from videos. Spatial features are captured by convolutional neural networks, pretrained on large face recognition datasets. We show that usage of strong industry-level face recognition networks increases the accura...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Sensors

سال: 2021

ISSN: 1424-8220

DOI: 10.3390/s21041078